Complex Powers of the Laplacian on Affine Nested Fractals as Calderón-zygmund Operators

نویسنده

  • MARIUS IONESCU
چکیده

We give the first natural examples of Calderón-Zygmund operators in the theory of analysis on post-critically finite self-similar fractals. This is achieved by showing that the purely imaginary Riesz and Bessel potentials on nested fractals with 3 or more boundary points are of this type. It follows that these operators are bounded on Lp, 1 < p < ∞ and satisfy weak 1-1 bounds. The analysis may be extended to infinite blow-ups of these fractals, and to product spaces based on the fractal or its blow-up.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilinear Calderón-zygmund Operators on Hardy Spaces

It is shown that multilinear Calderón-Zygmund operators are bounded on products of Hardy spaces.

متن کامل

Bilinear Square Functions and Vector-Valued Calderón-Zygmund Operators

Boundedness results for bilinear square functions and vector-valued operators on products of Lebesgue, Sobolev, and other spaces of smooth functions are presented. Bilinear vector-valued Calderón-Zygmund operators are introduced and used to obtain bounds for the optimal range of estimates in target Lebesgue spaces including exponents smaller than one.

متن کامل

A Calderón-zygmund Estimate with Applications to Generalized Radon Transforms

We prove a Calderón-Zygmund type estimate which can be applied to sharpen known regularity results on spherical means, Fourier integral operators and generalized Radon transforms.

متن کامل

Convolution Calderón-Zygmund singular integral operators with rough kernels

A survey of known results in the theory of convolution type Calderón-Zygmund singular integral operators with rough kernels is given. Some recent progress is discussed. A list of remaining open questions is presented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010